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In this paper, we introduce a new tensor named B-tensor which generalizes the Z-tensor
introduced by Mantica and Suh [Pseudo Z symmetric Riemannian manifolds with har-
monic curvature tensors, Int. J. Geom. Methods Mod. Phys. 9(1) (2012) 1250004]. Then,
we study pseudo- B-symmetric manifolds (PBS), which generalize some known struc-
tures on pseudo-Riemannian manifolds. We provide several interesting results which gen-
eralize the results of Mantica and Suh [Pseudo Z symmetric Riemannian manifolds with
harmonic curvature tensors, Int. J. Geom. Methods Mod. Phys. 9(1) (2012) 1250004].
At first, we prove the existence of a (PBS),. Next, we prove that a pseudo-Riemannian
manifold is B-semisymmetric if and only if it is Ricci-semisymmetric. After this, we
obtain a sufficient condition for a (PBS), to be pseudo-Ricci symmetric in the sense
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of Deszcz. Also, we obtain the explicit form of the Ricci tensor in a (PBS), if the
B-tensor is of Codazzi type. Finally, we consider conformally flat pseudo-B-symmetric
manifolds and prove that a (PBS),(n > 3) spacetime is a pp-wave under certain
conditions.

Keywords: Pseudo-symmetric manifolds; pseudo-Ricci symmetric manifolds; pseudo-
Z-symmetric manifolds; pseudo- B-symmetric manifolds.
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1. Introduction

As is well known, symmetric spaces play an important role in differential geometry.
The study of pseudo-Riemannian symmetric spaces was initiated in the late 20s
by Cartan [6], who, in particular, obtained a classification of those spaces. Let
(M",g), (n = dimM) be a pseudo-Riemannian manifold, i.e. a manifold M with the
pseudo-Riemannian metric g, and let V be the Levi-Civita connection of (M™,g).
A pseudo-Riemannian manifold is called locally symmetric [6] if VR = 0, where R
is the Riemannian curvature tensor of (M™", g).

As a generalization of Ricci symmetric manifolds (Vi R;; = 0, R;; is the Ricci
tensor), Chaki [3] introduced pseudo-Ricci symmetric manifolds. A non-flat pseudo-
Riemannian manifold (M", g), (n > 2) is said to be a pseudo-Ricci symmetric man-
ifold if its curvature tensor satisfies the condition

ViRij = 2ArRij + AiRy; + Aj R, (1.1)

where A; is a nonzero 1-form. V denotes the covariant differentiation with respect
to the metric tensor g. The 1-form A; is called the associated 1-form of the manifold.
If A; = 0, then the manifold reduces to a symmetric manifold in the sense of Cartan.
An n-dimensional pseudo-Ricci symmetric manifold is denoted by (PRS),,.

In 1993, Tamassy and Binh [26] introduced weakly Ricci symmetric manifolds.
It may be mentioned that a pseudo-Ricci symmetric manifold is a particular case of
a weakly Ricci symmetric manifold. In a recent paper [19], Mantica and Suh intro-
duced pseudo-Z-symmetric manifolds which is denoted by (PZS),,. It is a general-
ization of the notion of pseudo-Ricci symmetric manifolds, pseudo-projective-Ricci
symmetric manifolds [5]. A (0,2) symmetric tensor is a generalized Z-tensor if

Zij = Rij —|— d)gija (12)

where ¢ is an arbitrary scalar function. The scalar Z is obtained by transvect-
ing (1.2) with g% as follows:

Z = R+ ng. (1.3)
In this paper, we introduce a (0, 2) symmetric tensor B;; as follows:

Bij = aRij + bRgij, (14)
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where a and b are nonzero arbitrary scalar functions and R is the scalar curvature.
The scalar B is obtained by transvecting (1.4) with g% as follows:

B = (a+nb)R. (1.5)

Pseudo-Z-symmetric, weakly Z-symmetric and recurrent Z forms on pseudo-
Riemannian manifolds have been studied in ([19-21]), respectively.

Inspired by these works, we introduce a new type of manifold called pseudo-
B-symmetric manifolds. A manifold is called pseudo-B-symmetric and denoted by
(PBS)n, if the B-tensor of type (0,2) is nonzero and satisfies the condition

ViBij = 2A,B;j + AiBrj + A;j By, (1.6)
[

where A; is a nonzero 1-form. Obviously, one can see that for a = 1 and b = 4,
the (PBS),, reduces to (PZS), ([19, 22]) and for a = 1 and b = 0, the (PBS),
reduces to pseudo-Ricci symmetric manifolds [3].

On the other hand, quasi-Einstein manifolds arose during the study of exact
solutions of the Einstein field equations as well as during considerations of quasi-
umbilical hypersurfaces of semi-Euclidean spaces. A non-flat pseudo-Riemannian
manifold (M™, g)(n > 2) is defined to be a quasi Einstein manifold [4] if its Ricci
tensor R;; of type (0, 2) is not identically zero and satisfies the following condition:

Rij = agij + By,
where «a, 3 are scalars and 7; is a nonzero 1-form for all vector fields X. The quasi-
Einstein manifold is denoted by (QF),.
Gray [11] introduced the notion of cyclic parallel Ricei tensor and Codazzi-type

of Ricci tensor. A pseudo-Riemannian manifold is said to satisfy cyclic parallel Ricci
tensor [11] if its Ricci tensor R;; of type (0,2) is nonzero and satisfies the condition

ViRij +V;Ry; + VR, = 0. (1.7)

Again, a pseudo-Riemannian manifold is said to satisfy Codazzi-type of Ricci tensor
if its Ricci tensor R;; of type (0,2) is nonzero and satisfy the following condition:

ViRij = VRi. (1.8)
We also have a very useful lemma as follows.

Walker’s Lemma ([28]). If ai;, bi; are numbers satisfying a;; = aj;, and a;;by +
a;ib; + arb; =0 fori,j,k=1,2,...,n, then either all a;; = 0 or, all b; are zero.

The paper is organized as follows: After preliminaries in Sec. 3, we prove the
existence of a (PBS),(n > 2). In Sec. 4, we consider B-semisymmetric manifolds.
Next, we obtain a sufficient condition for a (PBS),, to be pseudo-Ricci symmetric
in the sense of Deszcz [10]. In Sec. 6, we consider a (PBS),(n > 2) with cyclic
parallel B-tensor and Codazzi-type of B-tensor. Finally, we consider conformally
flat (PBS),.

Throughout the paper, all manifolds under consideration are assumed to be
connected Hausdorff manifolds endowed with a non-degenerate metric of arbitrary
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signature, that is, n-dimensional pseudo-Riemannian manifolds. Particularly, we
will take into consideration n-dimensional Lorentzian manifolds, that is, with met-
rics of signature s = n — 2 [13].

2. Preliminaries

In this section, we study some well-known structures on pseudo-Riemannian man-
ifolds satisfied by B-tensor as follows:

(i) If B;; = 0 (the B-flat manifold), then the manifold is an Einstein manifold [1],
Rij = =%gi;.

(ii) If ViB;; = A\iB;j, (the B-recurrent manifold) then the manifold is a general-
ized Ricci-recurrent manifold [8]. The condition is equivalent to

ViRij = pplti; + (n— 1)%91‘]',

where juy, = — Y22 4 a);, and v, = —(RVb + Vi Rb) + A\, bR.
If up, = 1 and v = 0, then the manifold reduces to a Ricci recurrent
manifold.
(iii) Einstein equation [7] with cosmological constant A and energy—stress tensor
Tk may be written as

1
aBij = kT3,
where % = —%R + A,a # 0 and k is the gravitational constant. Then, % times
of B;; tensor may be thought of as a generalized Einstein gravitational tensor
bR

with arbitrary scalar function **.

Various conditions on the energy—momentum tensor determine constraints on
the B-tensor. The vacuum solution B = 0 determines an Einstein space with \ =
”2—;2]%; conservation of total energy—momentum (V;7}; = 0) implies that

1 1
\%/ <_>Bkl +-V'B, =0
a a

{33

the condition V;Bj; = 0 describes a space-time with conserved energy-momentum

and

density.

3. Existence of a (PBS),(n > 2)

In this section, it is shown that there exists a pseudo-Riemannian manifold
(M™ g)(n > 2), where B tensor satisfies the condition (1.1) and for which
ViBj, # 0.
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For this, we consider a pseudo-Riemannian manifold (M™,g)(n > 2) which
admits a linear connection I'}; defined by

L} =T} + Ao} + A;), (3.1)
where A; is a nonzero 1-form and which is such that
VB, =0, (3.2)

where V; denotes the covariant differentiation with respect to the connection f‘f;
If (3.2) is to hold, then we obtain

o _ _
57 Bk~ Bl — BjnL; = 0. (3.3)

Using (3.1) in (3.3), we get

0
%Bjk- — Bhk(F?i + AJ(S? + Aléjh) — th(l“zi + Ak(S? + AJ,’;) =0. (34)

From (3.4), we obtain
ViBjr = 2A;Bji, + Aj By, + A Bj;. (3.5)

The connection V is not identical with V. Hence, ViBji, # 0. Thus, if a pseudo-
Riemannian manifold (M™,g)(n > 2) admits a linear connection V which satis-
fies (3.1) and (3.2), then the manifold is a (PBS),,.

Hence, we have the following.

Theorem 3.1. If a pseudo-Riemannian manifold (M™, g)(n > 2) admits a linear
connection V which satisfies (3.1) and (3.2), then the manifold is a (PBS),(n > 2).

4. B-Semisymmetric Manifolds

A pseudo-Riemannian manifold is said to be Ricci-semisymmetric if R oS = 0 holds,
that is, (R(X,Y) 0 S)(U,V) = 0 for all vector fields X, Y, U and V, where R(X,Y)
denotes the curvature operator and S is the Ricci tensor of type (0,2), which can
be rewritten in local coordinate system as (R o S);jim = 0, where (R0 8);jim =
R Ry, + Rri R, and R;j and R! ;i are local components of Ricci tensor S of type
(0,2) and Riemann curvature tensor R of type (1, 3), respectively. Analogous to this
definition, we define B-semisymmetric manifold. A pseudo-Riemannian manifold is
said to be B-semisymmetric if (R o B);jim = 0.
In this section, we consider a B-semisymmetric manifold. Thus, we have

(R ) B)ijlm =0. (4.1)
Now,
(Ro B)ijim = BrjRjy,, + BriRj,,. (4.2)
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Using (4.1) in (4.2), we get
B.;jRy,, + BriRYy,, = 0. (4.3)
From (4.3) and (1.4), we obtain
a(Rrj Ry, + RriRYy,,,) + bR(9r Ry + 9riRY,) = 0, (4.4)
which implies
a(Ryj Ry, + RriRYy,,,) = 0. (4.5)
Since a # 0, thus (4.5) can be rewritten as follows:
Ry;jRyy,, + RriRYy,, =0, (4.6)
which implies
(Ro8)ijim = 0. (4.7)

Hence, the manifold is a Ricci-semisymmetric manifold. Conversely, if (4.7) holds,
then from (4.2), we can conclude that (4.1) holds, that is, Ricci-semisymmetry
implies B-semisymmetry.

Thus, we have the following.

Theorem 4.1. A pseudo-Riemannian manifold is B-semisymmetric if and only if
1t 1s Ricci-semisymmetric.

5. Sufficient Conditions for a (PBS),(n > 2) to be Ricci
Pseudo-Symmetric in the Sense of Deszcz

In this section, we investigate sufficient conditions for pseudo-B-symmetric mani-
folds to be Ricci pseudo-symmetric in the sense of Deszcz.
We have from (1.6)

VBy = 2AsBy + ApBg + A By, (5.1)
Taking covariant derivative on (5.1), we get
ViVsB = 2(ViAs) B + 2A5(2Ai By + ApBi + AiBi) + (ViAg) B
+ Ag(24;Bsi + AsBi + A1 Bis) + (Vi A1) Bsi, + A1(2A; Bsy,
+ AsBii, + ApBis). (5.2)
Interchanging the indices s and i in (5.2) and subtracting, we obtain
(VsVi = ViV) B = 2(VA; — ViA) B + Bu(VsAx — ArAs)
= Ba(ViAp — A Ai) + Bri(Vs A — A Ag)
— B (Vi A — Al Ay). (5.3)
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Now, if possible let

ViAp = Ak As + V9ks, (5.4)
where + is an arbitrary scalar function. Then, we have
(VsVi = ViVy) B = v(Bigsk — Bsigir + Brigst — Bskgit)- (5.5)
Now, using (1.4) in (5.5) yields
(VsVi = ViVy) B = v(Rugsk — Ragix + Rrigst — Rskgir)- (5.6)

If (5.6) holds, then we call the manifold pseudo-Ricci symmetric in the sense of
Deszcz [10]. Thus, we have the following.

Theorem 5.1. If M is an n-dimensional (PBS), and the associated 1-form is
concircular of the form Vs Ar = ArAs + Ygrs, then the manifold is pseudo-Ricci
symmetric in the sense of Deszcz.

On the other hand, if we consider a pseudo-B-symmetric manifold, which is
also pseudo-Ricci symmetric in the sense of Deszcz [10], then we can obtain an
interesting result.

From the contracted second Bianchi identity VmRﬂl = ViRj; — VR and
from the definition of the B-tensor, we have

aVmRjjy = ViBji — VB + [(V;(bR)) gk — (Vi (bR))gju]- (5.7)
From (1.6) and (5.7), we get
aVm Ry = ApBji — AjB + [(V;(0R))gr — (Vi (bR))gju]- (5.8)

Taking covariant derivative of (5.8) yields
VianRﬂl + aVleRg’}gl = (VZAk)le + Ak(leﬂ) — (VZAJ)BM — Aj (VIBM)
+[(ViV;(bR))gr — (ViVi(bR))gji). (5.9)

By performing a cyclic permutation of indices i, j, k and then adding the resulting
three equations and using the contracted Bianchi identity, we obtain

ViaVm Ry + V;aV Ry + ViaVi R
+ a[(VNk — Vkvi)le + (V]Vi — ViVj)Rkl + (Vij — Vjvk)Ril]
= (VA — VkAi)le + (Vin — ViAj)Bkl + (VkAj — VjAk)Bil]. (5.10)

Now if the manifold is pseudo-Ricci symmetric in the sense of Deszcz [10], then
from (5.10), we obtain

(ViAk — VkAi)le + (Vin — ViAj)Bkl + (VkAj — VjAk)Bil
= VianR?}Cl + VjanRzl + VkanR;'}l. (5.11)
Suppose a is constant, then (5.11) reduces to
(ViAk — VkAi)le + (Vin — ViAj)Bkl + (VkAj — VjAk)Bil =0. (5.12)
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Now if det(By;) # 0, then there exists a (2,0) tensor (B~1)*™ with the property
Bkl(B_l)km = (Slm
Multiplying (5.12) by (B~1)" we obtain
Putting A = j and summing from (5.13) yields
(n—2)(V;Ar — Vi A;) =0. (5.14)
Thus for n > 2, the 1-form Ay, is a closed 1-form. Hence, we have the following.
Theorem 5.2. If a (PBS),(n > 2) is pseudo-Ricci symmetric in the sense of

Deszcz and a is constant, then the associated 1-form A is closed, provided the
B-tensor is non-singular.

6. (PBS),(n > 2) with Cyclic Parallel B-Tensor and Codazzi
Type of B-Tensor

In analogy to the definition in (1.7), we define cyclic B-tensor as follows.
An n-dimensional manifold is said to be cyclic B-tensor if the following condition
holds:

VB + ViByj + V; By = 0. (6.1)

Now from (1.6), we obtain
VyBij + ViByj + V;Bir, = 4A,By; + AA; Byj + 44, Biy,. (6.2)

Using (6.1) in (6.2) yields
44y Bi; + 4A;By; + 4A;Biy, = 0. (6.3)

Then by Walker’s lemma, we can see that either A; = 0 or B;; = 0 for all 4, j. But
both of A; and B;; are not zero in a (PBS),. Hence, we have the following.

Theorem 6.1. There does not exist a (PBS),(n > 2) with cyclic parallel B-tensor.

Now, we suppose that the B-tensor in a (PBS),(n > 2) is of Codazzi type.
Now from (1.6), we obtain

ViBji — V; By = AyBy — A; By (6.4)
Since B is of Codazzi type, we have from (6.4)
AxBj — A; By = 0. (6.5)
Now multiplying (6.5) by A* and taking sum, we get
AR ALBj — AjAY By = 0. (6.6)
Again transvecting (6.5) by ¢/' yields
ApB — A'By, = 0. (6.7)
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Using (6.7) in (6.6), we get

A A
B, =-"21"'B. )
gl AkAk (6 8)
Using (1.4), (1.5) in (6.8) and simplifying, we obtain
bR a+bn
le =——9 + gREJ'EI, (6.9)
a a
where E; = Hfl‘{l\'
We rewrite (6.9) as follows:
le = ag; + 5EjEl, (6.10)
where o = —bTR and 0 = @R. Thus, we have the following.

Theorem 6.2. A (PBS),(n > 2) with Codazzi type of B-tensor is a quasi-Einstein
manifold.

Remark 1. The above theorem generalizes the results of [9].

Moreover from (6.5) and definition (1.6), we have V;B;; = 24, B;; +2A;Byj =
4AyB;; and the tensor B;; is recurrent.

Theorem 6.3. Let M be an n(n > 3) dimensional (PBS),, pseudo-Riemannian
manifold: if the condition VB, = V;By is satisfied, then the tensor Bj; is
recurrent, that is, Vi Bj = 4 A, Bjy.

The case in which the vector Ay results to be a null vector, that is, A74; = 0
is even more interesting. Let #* be a vector such that ¥ A, = 1: from A;jBy =
Ay Bj, we have By = Ax07 Bj and by symmetry also Ax07 Bj = A;67 Bjx, and thus
Gijl = Ay(0F¢7 By,;j) from which finally:

B = YA Ay, (6.11)

being 9m9ijj = 1 a scalar function. The rank of the tensor By; is thus one.
Contracting (6.11) with g*', we get B = 0, so that R = 0 or b = —. In the first
case, the Ricci tensor is given by Ry = %AkAl and its rank is one; in the second
case, the Ricci tensor turns out to be Ry = %AkAl + %gkl. The following theorem
may be stated.

Theorem 6.4. Let M be an n(n > 3)-dimensional (PBS),, pseudo-Riemannian
manifold: if the condition VBj, = V; By, is satisfied, and the vector A; results to be
a null vector, that is, AjAj =0, then the Ricci tensor takes the form Ry = %AkAl
or Ry = LA A+ Bgy.

We follow now a trick due to Roter in [24], Theorem 1. Inserting (6.11) in
ViBji = 4A,Bj after a straightforward calculation, we infer:

(VjAp)Ar + Ar(V;A) = [44; — Vi In|p[| AR Ay (6.12)
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On multiplying the previous result by 6%, we get easily:
(VjAg) + Ap0'(V;A)) = [4A; — V; In|i|] Ay (6.13)
Again a multiplication by 6% gives:
1
(V;Ap)0* = 51445 = Vi [y || Ay, (6.14)
and inserting back in (6.13) the covector A; results to be recurrent, that is,

VjAk = [4AJ - Vj ln|¢|]Ak = ijk- (615)

1
2
If the covector A; is closed, then from the recurrence relation we get p; A, = prA;
and transvecting this with 6% it is easily seen that p; = yA; for some function v
and thus,

VjAk = ﬁ/AjAk. (616)

Now let us suppose that the one form A is locally a gradient, that is, A; = V;h
for some scalar function i on the manifold: it can be see easily that the rescaled
null covector Ay, = Ape™ 24"~ 1¥ is a covariantly constant, that is, V; Az = 0; we
have proved the following.

Theorem 6.5. Let M be an n(n > 3)-dimensional (PBS),, pseudo-Riemannian
manifold: if the condition Vi Bj = V;By is satisfied and the vector A; satisfies
AjAj = 0 then the null covector Ay is recurrent, that is, V;Ay = p;j Ay for some
one form pj; further if the same covector is locally a gradient, then it can be rescaled
to a null covariant constant.

Lorentzian manifolds, that is, space-times with recurrent null vectors were stud-
ied for a long time (see for example [2, 14, 15, 25, 27]). In particular, Walker [27]
found a set of canonical coordinates for the metric in such case. Here, we refer to
[15, Proposition 1].

Theorem 6.6. Let (M, g) be a Lorentzian manifold of dimension n+2 > 2 with a
recurrent null vector field Vi, X; = pX;.

(1) This is equivalent to the existence of coordinates (v,x1,..., &y, u) in which the
metric has the following local shape:

ds* = 2dudv + a;(z1, . .., Tp,u)de'du+ H(v,x1,. .., Ty, u)du?
+g(21,. .., T, u)dz' da? (6.17)

with 85’5 = %‘; =0,H € C*(M). To these coordinates, we refer as Walker
coordinates.

(2) ViX,; = 0 if and only if H does not depend on v, that is, %—IZ = 0. To these
coordinates, we refer as Brinkmann coordinates.

1750119-10
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A Lorentzian manifold with null covariantly constant vector field is named
Brinkmann wave after [2]. In [17], an n-dimensional pseudo-Riemannian manifold
on which the Ricci tensor has the form Ry = ¥ X, X; and the null vector X is
recurrent, that is, V, X; = pp X}, is named pure radiation metric with parallel rays
or aligned pure radiation metric. In view of Theorem 6.3, we can thus state the
following.

Theorem 6.7. Let M be an n(n > 3)-dimensional (PBS), space-time: if the
condition Vi Bj; = V By is satisfied and the vector satisfies AjAj = 0, then the
metric assumes the local shape (6.17) in Walker coordinates; further if the null
vector Ay is locally a gradient, then the manifold is a Brinkmann wave.

These results generalize similar ones in [23].

7. Conformally Flat (PBS),(n > 2)

In general, the B-tensor in a (PBS),, is not of Codazzi type. In this section, it is
shown that the B-tensor in a conformally flat (PBS),(n > 2) is of Codazzi type.
It is known that in a conformally flat manifold, the following relation holds:

ViRij — VR, = [9i; ViR — gV R]. (7.1)

1
2(n—1)
Here, we consider a conformally flat (PBS),(n > 2). Now from (1.4), we obtain

ViRi; — VR, = Vi Bij — V;Byy. (7.2)

Let a,b and R be constants.
Then from (7.1) and (7.2), we get

ViBij — V; By = 0.
Thus B-tensor in the (PBS),,(n > 2) of Codazzi type. Hence, we have the following.

Theorem 7.1. The B-tensor in a conformally flat (PBS),(n > 2) with constant
value of a,b and R is of Codazzi type.

Next, we consider conformally flat (PBS), Lorentzian manifolds with a,b,
b # —= constants and vanishing of the scalar curvature, that is, R = 0. Then,
ViBji = V;By and if the vector A; satisfies A’A; = 0, the Ricci tensor
writes as Ry = %AkAl. Moreover, from Theorem 6.5, the null vector is recurrent,
that iS, VJAk = ijk-

Now, we introduce the definition of a pp-wave and related properties as stated
in ([14-16]).

Definition 7.1 ([14—-16]). A Brinkmann wave is called pp-wave if its curvature
tensor satisfies the trace condition RYj Rpgim = 0.

1750119-11
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In [25], the following coordinate description and equivalence are proved. Here,
we remand to ([14-16]).

Lemma 7.1 ([14-16, 25]). A Lorentzian manifold (M, g) of dimension n+2 > 2
is a pp-wave if and only if there exist coordinates (v,x1,...,x,,u) in which the
metric has the following local shape:

ds® = 2dudv + H(zy, ..., o, u)du® + dxjdxj, (7.3)

where H(x1,...,x,,u) is an arbitrary smooth function with the property %—Ig =0,
usually called the potential function of the pp-wave.

Lemma 7.2 ([14-16, 25]). A Lorentzian manifold (M, g) of dimension n+2 > 2
with parallel null vector field Vi, X=0 is a pp-wave if and only if one of the following
conditions is satisfied:

XiRjpim + X Ryitm + Xk Rijim =0, (7.4)
Ritim = X; XDt — X; X1 Dyie — X Xon Dt + Xp X1 D (7.5)
RY Rpimg = XXX X1 X, (7.6)

being D;; a symmelric tensor and x a suitable scalar function. The Ricci tensor of
a pp-wave is given by Ry = v X, X, for a smooth function . In dimension n = 4,
this is even equivalent to Ry Rping = 0 (see [18]).

As a first from the definition of the conformal curvature tensor and from the
local form of the Ricci tensor, the following relation is displayed immediately:

AiCjkim + AjCritm + AkCijim = AiRjkim + A Riitm + Ak Rijim.- (7.7)

Transvecting the previous equation by ¢"™ and taking account of Ry = %AkAh
we easily get A" Cjxim = A™ Rjpm. Since the space is conformally flat, we have
AiRjjim + AjRiitm + ArRijim = 0 from (7.7) and A" Rjkim = 0. A skew sym-
metrization of the covariant derivative of the recurrence condition VA, = p; Ay
and the Ricci identity give ﬂlAm = (V;Ar—VA;j)A;. This result ensures that, at
least locally, Ay (see [12, pp. 242-243]) is a gradient, that is, A; = V;h and thus such
covector can be locally rescaled to a null covariantly constant A; = Ake’%[‘*h*l”'d’”
so that ijlk =0 and AiRjk:lm +flijilm +AkRijlm = 0. Lemma 7.2. ensures that
the metric is (7.3) and thus pp-wave metric.

Theorem 7.2. Let M be a conformally flat n-dimensional (PBS),, space-time with
a,b, b # —+ constants and vanishing of the scalar curvature, that is, R = 0 : if
AR AF =0 then Aj is locally a gradient and can be rescaled to a covariantly constant
vector flj, the relation fliRjklm + flijilm + flkRijlm = 0 holds and the space is
thus a pp-wave with metric (7.3).

These results generalize similar ones in [23].
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